
M U O N g − 2

O F F L I N E C O M P U T I N G
A N D S O F T WA R E
M A N U A L

v5_00_00 November 13, 2014 [gm2swdocs feature/markdownify 10fda9d] GM2-doc-1825

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825

Contents

1 Getting started with gm2artexamples 5

1.1 Logging in and selecting a release area 5

1.2 Starting a development area 6

1.3 Checkout code 8

1.4 Building code 9

1.5 Testing 9

1.6 Running 11

1.7 Logging in again 12

1.8 Summary 12

2 Writing Source Code 15

2.1 Top level CMakeLists.txt file 15

2.2 Organizing Source Code 17

2.3 Writing Modules 17

2.4 Writing Services 18

2.5 Writing Input Source Modules 18

2.6 Directory level CMakeLists.txt file 18

2.7 Libraries produced from building 20

2.8 Using External Code (Linking) 20

4

3 Common Things You Do... 27

3.1 Dealing with parameters 27

3.2 Readling enviornment variables 27

3.3 Throwing an exception 27

3.4 Finding a file 28

Index 31

1

Getting started with gm2artexamples

This section is a short tutorial to show you quickly how to get started
by,

• Logging in and selecting a release (the latest)
• Starting a development area
• Checking out code (gm2artexamples)
• Building it
• Testing
• Running
• Logging in again

For this tutorial, we’ll use the gm2artexamples product.1 This is a 1 We use the terms product,
project, and package somewhat
interchangeably. All of our prod-
ucts live on the Redmine server,
http://redmine.fnal.gov

good product to use if you are getting started.

1.1 Logging in and selecting a release area

Fermilab has several interactive virtual machines for use by the Muon
g− 2 collaboration. See here for more information about how to log in.
Our releases (libraries, executables) are served by CVMFS.2 CVMFS 2 CVMFS is a system that serves

application code and updates auto-
matically when new files are released.

is already mounted on the Fermilab interactive VMs. If you have a
Mac, you can install CVMFS yourself by looking here, and then use
your Mac to develop code.

Once you’ve logged into the machine, you need to select a release
area. You always3 need to do this step everytime you log in. If you 3 You need to do this step everytime

you log in because you can use
different release areas for the same
development area, say, for example, if
CVMFS is down or you are sharing
a directory between your Mac and a
Linux system.

are on a Fermilab interactive VM (gm2gpvm01, gm2gpvm02, gm2gpvm03,
gm2gpvm04), you select the release area by doing,

$ source /grid/fermiapp/gm2/setup # On gm2gpvm machine

Note that $ is the shell prompt (don’t type it in).

https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/GPCF
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/InstallingOasisOnMacLaptop

6 offline computing and software manual

If you are on a Mac or another system with CVMFS OASIS in-
stalled, you do (and will see in response, which will be the same as the
command above)

$ source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Mac

g-2 software

--> To list gm2 releases, type
ups list -aK+ gm2

--> To use the latest release, do
setup gm2 v5_00_00 -q e6:prof

For more information, see https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/ReleaseInformation

1.2 Starting a development area

Now that the release area is selected, you need to make a development
area. The development area contains source code, build products,
and a personal release area. You typically use a development area
for a particular topic, such as adding a feature to the simulation or
generating a plot for some study. You can have as many development
areas as you want, but only one can be active at a time.

Make an empty directory and go there. If you are on a gm2gpvm
machine, you should make an area in /gm2/app/users/<YOUR_NAME>.4 4 If this directory does not exist, you

can make it with the mkdir command.You can put code in your home directory, but that has a small quota
and you can easily use it all up. There is no quota on /gm2/app, but it
is not backed up.

$ mkdir /gm2/app/users/lyon/first-try # On gm2gpvm
$ cd /gm2/app/users/lyon/first-try

If you are on your Mac, or some other machine, make the directory
where you have room.

$ mkdir ~/Development/g-2/first-try # On Mac
$ cd ~/Development/g-2/first-try

Since you are starting out with a new area, you must choose a
release. You should generally choose the latest, which will be specified
in the output when you selected the release area. Just do what the
command says,5 5 setup is a ups command. UPS is

our release and product management
system.$ setup gm2 v5_00_00 -q e6:prof

So here we are setting up g-2 release v5_00_00 with the e6:prof
qualifier. e6 indicates the type of compiler we’re using (in our case
gcc 4.9.1 with C++14 features turned on - this code is decided by
the art team) and prof means we’ll do a profile build. Profile builds

getting started with gm2artexamples 7

are optimized and have debugging symbols turned on. We only use
profile builds.

Now, you must create the development area. You will start using
the mrb commands. mrb means “multi-repository build system” and
is a build system used by Muon g − 2, the art developers, and LBNF.
You can get a list of mrb commands with (you don’t have to type in
the full path that you see below),

$ mrb -h
Usage /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/mrb/v1_03_00_gm2/bin/mrb [-h for help]"

Tools (for help on tool, do "/cvmfs/oasis.opensciencegrid.org/gm2/prod/external/mrb/v1_03_00_gm2/bin/mrb <tool> -h")

newDev (n) Start a new development area
gitCheckout (g) Clone a git repository
svnCheckout (svn) Checkout from a svn repository
setEnv (s) Setup development environment (mrbSetEnv)
build (b) Run buildtool
install (i) Run buildtool with install
test (t) Run buildtool with tests
setup_local_products (slp) Setup local products (mrbslp) [not local sources]
zapBuild (z) Delete everything in your build area
newProduct (p) Create a new product from scratch
changelog (c) Display a changelog for a package
bumpVersion (bv) Bump version number of a package
updateDeps (ud) Update dependencies in CMakeLists.txt and product_deps
updateCM (uc) Update the master CMakeLists.txt file
makeDeps (md) Build or update a header level dependency list
checkDeps (cd) Check for missing build packages
pullDeps (pd) Pull missing build packages into MRB_SOURCE

Aliases (we use aliases for these commands because they must be sourced)

mrbsetenv Setup a development enviornment and local products [use this more often]
(source $MRB_DIR/bin/mrbSetEnv)

mrbslp Setup only the products installed in the working localProducts_XXX directory
(source $MRB_DIR/bin/setup_local_products)

The mrb commands are the same if you are on gm2gpvm or your
Mac.

To initialize your development area, do this in an empty directory.

$ mrb newDev

building development area for gm2 v5_00_00 -q e6:prof

MRB_BUILDDIR is /Users/lyon/Development/g-2/first-try/build_d13.x86_64
MRB_SOURCE is /Users/lyon/Development/g-2/first-try/srcs
INFO: cannot find releaseDB/base_dependency_database

mrb checkDeps and pullDeps may not have complete information
MRB_PROEJCT IS gm2

IMPORTANT: You must type
source /Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof/setup

NOW and whenever you log in

Read the output carefully. Some things to note:

• A build directory is created and note its name contains the flavor
of your machine.6 You can get to that directory easily with cd 6 Mac is d13 (for Darwin version

13) and slf5, slf6 are marked as
appropriate.

$MRB_BUILDDIR .

8 offline computing and software manual

• A source directory is created for your source code. You can get to
it easily by doing cd $MRB_SOURCE .

• You can ignore the message about the release database. That’s a
LBNF thing we don’t use.

• The important message is indeed important. There is a set up
script that you need to run that sets up your environment. Run
that script now and whenever you log in to restore your develop-
ment environment. You don’t need to type in the whole path, since
you are at the top of your development area.

$ source localProducts_gm2_v5_00_00_e6_prof/setup

MRB_PROJECT=gm2
MRB_PROJECT_VERSION=v5_00_00
MRB_QUALS=e6:prof
MRB_TOP=/Users/lyon/Development/g-2/first-try
MRB_SOURCE=/Users/lyon/Development/g-2/first-try/srcs
MRB_BUILDDIR=/Users/lyon/Development/g-2/first-try/build_d13.x86_64
MRB_INSTALL=/Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof

PRODUCTS=/Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof:/cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2:/cvmfs/oasis.opensciencegrid.org/gm2/prod/external

• A local products area is also created. This is your own personal
release area that overlays the official one (so stuff you have in your
personal release area override products in the official one).

1.3 Checkout code

Now you need to checkout some code. For this example, we’ll use the
gm2artexamples product. All of our code lives in git repositories on
http://redmine.fnal.gov . The mrb gitcheckout command is used to
clone the git repositories (this is a convenience command so you don’t
have to remember the git URLs and other set up tasks).7 Let’s check 7 You can type mrb g for short.
out the gm2artexamples product. You must be in the srcs directory
of your development area. The command is rather chatty.

$ cd srcs
$ mrb g gm2artexamples

git clone: clone gm2artexamples at /Users/lyon/Development/g-2/first-try/srcs
NOTICE: Running git clone ssh://p-gm2artexamples@cdcvs.fnal.gov/cvs/projects/gm2artexamples
Cloning into 'gm2artexamples'...
X11 forwarding request failed on channel 0
ready to run git flow init for gm2artexamples
Already on 'master'
Your branch is up-to-date with 'origin/master'.
Using default branch names.
Already on 'develop'
Your branch is up-to-date with 'origin/develop'.
Branch develop set up to track remote branch develop from origin.
X11 forwarding request failed on channel 0
Already up-to-date.
NOTICE: Adding gm2artexamples to CMakeLists.txt file
NOTICE: You can now 'cd gm2artexamples'

You are now on the develop branch (check with 'git branch')
To make a new feature, do 'git flow feature start <featureName>'

getting started with gm2artexamples 9

At this moment, you need to switch to a particular feature branch
that is compatible with gm2 v5_00_00. Do the following,8 8 This step will disappear shortly.

$ cd gm2artexamples
$ git flow feature track gm2_5
$ cd ..
X11 forwarding request failed on channel 0
Switched to a new branch 'feature/gm2_5'
Branch feature/gm2_5 set up to track remote branch feature/gm2_5 from origin.

Summary of actions:
- A new remote tracking branch 'feature/gm2_5' was created
- You are now on branch 'feature/gm2_5'

If you have more code to checkout, then run more mrb g com-
mands.

1.4 Building code

Now that your code is checked out, you need to build it. The first step
you need to do is to “extend” your environment with any products
your build depends upon set up. The way to do this is to do source
mrb setEnv.9 You need source (or . for short) because your shell 9 There are two shortcuts for source

mrb setenv; you can do . mrb s
or mrbsetenv (the latter is a bash
function that does the source for
you).

environment needs to be extended with new environment variables.
You need to run this command after you log back into and start
developing. If you do not make major changes to your code (you don’t
introduce new dependencies), then you only need to run the command
once before you build.

$. mrb s
local product directory is /Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof
----------- this block should be empty ------------------

ERROR: Cannot do unsetup, SETUP_CETPKGSUPPORT is not defined
The working build directory is /Users/lyon/Development/g-2/first-try/build_d13.x86_64
The source code directory is /Users/lyon/Development/g-2/first-try/srcs
----------- check this block for errors -----------------------
--

For now, ignore the error about SETUP_CETPKGSUPPORT (it is be-
nign). You should not see any errors between the dashed lines. If you
do, then you have some product dependency mismatch (ask for help).

Now you can build your code. The build command is mrb build.10 10 mrb b for short

$ mrb b

The long output is not shown. Hopefully there will be no compila-
tion errors. If you get some, ask for help.

1.5 Testing

gm2artexamples is currently the only product that has unit tests. To
try them, just do mrb test.11 11 mrb t for short. A short build check

will occur to ensure that everything is
built.

10 offline computing and software manual

$ mrb t

/Users/lyon/Development/g-2/first-try/build_d13.x86_64
calling buildtool -I /Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof -b -t
INFO: Install prefix = /Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof
INFO: CETPKG_TYPE = Prof

INFO: Stage cmake.

-- Product is gm2artexamples v2_00_00 e6:prof
-- Module path is /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/art/v1_12_02/Modules;/cvmfs/oasis.opensciencegrid.org/gm2/prod/external/cetbuildtools/v4_03_02/Modules
-- set_install_root: PACKAGE_TOP_DIRECTORY is /Users/lyon/Development/g-2/first-try/srcs/gm2artexamples
-- Building for Darwin d13 x86_64
-- set_install_root: PACKAGE_TOP_DIRECTORY is /Users/lyon/Development/g-2/first-try/srcs/gm2artexamples
-- Selected diagnostics option CAUTIOUS
-- cmake build type set to Prof in directory <top> and below
-- DEFINE (-D): ;NDEBUG
-- compiler flags for directory <top> and below
-- C++ FLAGS: -O3 -g -gdwarf-2 -fno-omit-frame-pointer -Werror -pedantic -std=c++1y -Wall -Werror=return-type
-- C FLAGS: -O3 -g -gdwarf-2 -fno-omit-frame-pointer -Werror -pedantic -Wall -Werror=return-type
-- Boost version: 1.56.0
-- Found the following Boost libraries:
-- chrono
-- date_time
-- filesystem
-- graph
-- iostreams
-- locale
-- prg_exec_monitor
-- program_options
-- random
-- regex
-- serialization
-- signals
-- system
-- thread
-- timer
-- unit_test_framework
-- wave
-- wserialization
-- CPACK_PACKAGE_NAME and CPACK_SYSTEM_NAME are gm2artexamples d13-x86_64-e6-prof
-- Configuring done
CMake Warning (dev):

Policy CMP0042 is not set: MACOSX_RPATH is enabled by default. Run "cmake
--help-policy CMP0042" for policy details. Use the cmake_policy command to
set the policy and suppress this warning.

MACOSX_RPATH is not specified for the following targets:

gm2artexamples_DataObjects_dict
gm2artexamples_DataObjects_map
gm2artexamples_HitAndTrackObjects_dict
gm2artexamples_HitAndTrackObjects_map
gm2artexamples_Lesson1_HelloWorld1_module
gm2artexamples_Lesson1_HelloWorld2_module
gm2artexamples_Lesson1_MyDatumReader_module
gm2artexamples_Lesson1_ProduceMyLittleDatum_module
gm2artexamples_Lesson2_makeHits_module
gm2artexamples_Lesson2_makeRotatedHits_module
gm2artexamples_Lesson2_makeSimpleTracksFromNewHits_module
gm2artexamples_Lesson2_makeSimpleTracksFromOldHits_module
gm2artexamples_Lesson2_readHits_module
gm2artexamples_Lesson2_readSimpleTracks_module
test_MyLittleDatumAnalyzer_module
test_MyLittleDatumProducer_module

This warning is for project developers. Use -Wno-dev to suppress it.

-- Generating done
-- Build files have been written to: /Users/lyon/Development/g-2/first-try/build_d13.x86_64

INFO: Stage cmake successful.

INFO: gm2artexamples version 2.00.00 configured.

INFO: Stage build.

[3%] Built target gm2artexamples_DataObjects
[9%] Built target gm2artexamples_DataObjects_dict
[15%] Built target gm2artexamples_DataObjects_map
[21%] Built target gm2artexamples_HitAndTrackObjects
[28%] Built target gm2artexamples_HitAndTrackObjects_dict
[34%] Built target gm2artexamples_HitAndTrackObjects_map
[37%] Built target gm2artexamples_Lesson1_HelloWorld1_module
[40%] Built target gm2artexamples_Lesson1_HelloWorld2_module
[43%] Built target gm2artexamples_Lesson1_MyDatumReader_module
[46%] Built target gm2artexamples_Lesson1_ProduceMyLittleDatum_module
[50%] Built target gm2artexamples_Lesson2_makeHits_module
[53%] Built target gm2artexamples_Lesson2_makeRotatedHits_module
[56%] Built target gm2artexamples_Lesson2_makeSimpleTracksFromNewHits_module
[59%] Built target gm2artexamples_Lesson2_makeSimpleTracksFromOldHits_module

getting started with gm2artexamples 11

[62%] Built target gm2artexamples_Lesson2_readHits_module
[65%] Built target gm2artexamples_Lesson2_readSimpleTracks_module
[68%] Built target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+bin+myLittleDatum_wr.sh
[71%] Built target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+bin+very_simple_test.sh
[75%] Built target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+MyLittleDatum_test.d+MyLittleDatum_test.fcl
[78%] Built target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+MyLittleDatum_test.d+messageDefaults.fcl
[81%] Built target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+MyLittleDatum_r.fcl
[84%] Built target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+MyLittleDatum_w.fcl
[87%] Built target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+messageDefaults.fcl
[90%] Built target simple_test
[93%] Built target test_MyLittleDatumAnalyzer_module
[96%] Built target test_MyLittleDatumProducer_module
[100%] Built target test_with_boost

real 0m4.638s
user 0m1.585s
sys 0m1.228s

INFO: Stage build successful.

INFO: Stage test.

Test project /Users/lyon/Development/g-2/first-try/build_d13.x86_64
Start 1: very_simple_test.sh

1/5 Test #1: very_simple_test.sh Passed 0.01 sec
Start 2: simple_test

2/5 Test #2: simple_test Passed 0.01 sec
Start 3: test_with_boost

3/5 Test #3: test_with_boost Passed 0.01 sec
Start 4: MyLittleDatum_test

4/5 Test #4: MyLittleDatum_test Passed 0.32 sec
Start 5: myLittleDatum_wr.sh

5/5 Test #5: myLittleDatum_wr.sh Passed 0.76 sec

100% tests passed, 0 tests failed out of 5

Total Test time (real) = 1.12 sec

INFO: Stage test successful.

1.6 Running

There are several fcl files you can run for gm2artexamples.

$ ls $MRB_SOURCE/gm2artexamples/fcl

CMakeLists.txt
hello1.fcl
hello2.fcl
makeAndReadDatum.fcl
makeAndReadTracksFromOldHits.fcl
makeDatum.fcl
makeHits.fcl
makeHitsRotated.fcl
makeTracksFromNewHits.fcl
makeTracksFromOldHits.fcl
messageservice.fcl
minimalMessageService.fcl
readDatum.fcl
readHits.fcl
readSimpleTracks.fcl

Our art executable is called gm2. FCL files are found by the
$FHICL_FILE_PATH search path.

$ gm2 -c hello1.fcl

%MSG-i MF_INIT_OK: 13-Nov-2014 11:51:41 CST JobSetup
Messagelogger initialization complete.
%MSG
Begin processing the 1st record. run: 1 subRun: 0 event: 1 at 13-Nov-2014 11:51:41 CST

12 offline computing and software manual

Hello, world. From analyze. run: 1 subRun: 0 event: 1
Begin processing the 2nd record. run: 1 subRun: 0 event: 2 at 13-Nov-2014 11:51:41 CST
Hello, world. From analyze. run: 1 subRun: 0 event: 2

TrigReport ---------- Event Summary ------------
TrigReport Events total = 2 passed = 2 failed = 0

TrigReport ------ Modules in End-Path: end_path ------------
TrigReport Trig Bit# Visited Passed Failed Error Name
TrigReport 0 0 2 2 0 0 hello

TimeReport ---------- Time Summary ---[sec]----
TimeReport CPU = 0.000056 Real = 0.000085

Art has completed and will exit with status 0.

1.7 Logging in again

At some point, you will want to log out of your machine and log back
in later to continue your work. To reconstitute your development
environment, you need to,

• Select the release area

source /grid/fermiapp/gm2/setup # on gm2gpvm
source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Mac

• Chnage directory to your development area

cd ~/Development/g-2/first-time # On my Mac

• Run the setup script in local products (this will re-select the chosen
g-2 release)

source localProducts_gm2_v5_00_00_e6_prof/setup

• Extend the environment for the products your build depends upon
(don’t forget the leading dot)

. mrb s

Now you are set to build (mrb b), run (gm2 -c FCL_FILE), and
develop.

1.8 Summary

Here is a summary of the commands for gm2 v5_00_00.

1.8.1 To checkout, build and run gm2artexmples to a new
development area

Log into machine (e.g. gm2gpvm.fnal.gov)

getting started with gm2artexamples 13

Select release area
source /grid/fermiapp/gm2/setup # On gm2gpvm
source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Mac

Create development area
mkdir /gm2/app/users/lyon/first-time # For me on gm2gpvm
mkdir ~/Development/g-2/first-time # For me on my Mac
cd <THAT_DIRECTORY>

Setup the release
setup gm2 v5_00_00 -q e6:prof

Initialize Development area
mrb newDev
source localProducts_gm2_v5_00_00_e6_prof/setup

Checkout code
cd srcs
mrb g gm2artexamples

Get right branch (for now)
cd gm2artexamples
git flow feature track gm2_5
cd ..

Extend environment with build dependencies
. mrb s

Build it
mrb b

Test it
mrb t

Run it
gm2 -c hello1.fcl

1.8.2 Restoring environment when logging in again later

Here’s what you do to restore your environment

Log into machine (e.g. gm2gpvm.fnal.gov)

Select release area
source /grid/fermiapp/gm2/setup # On gm2gpvm

14 offline computing and software manual

source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Mac

cd to development area
cd /gm2/app/users/lyon/first-time # For me on gm2gpvm
cd ~/Development/g-2/first-time # For me on my Mac

Restore basic environment
source localProducts_gm2_v5_00_00_e6_prof/setup

Extend environment with build dependencies
. mrb s

Now you can work!! For example
mrb b # Build it if you've made a change since last time
mrb t # Test it
gm2 -c hello1.fcl # Run it

2
Writing Source Code

Your source code lives within a git project checked out to your devel-
opment area’s srcs directory. The project has a top level directory1 1 For example, the gm2ringsim

project would get checked out to
srcs/gm2ringsim, which is the “top
level” directory.

that contains the “top level” CMakeLists.txt file along with various
subdirectories. Code with a common purpose should live in a partic-
ular subdirectory.2 You may mix headers (.h, .hh), implementation 2 Examine gm2ringsim for more

examples.(.cc, .cpp), and configuration (.fcl) files all in the same subdirec-
tory.

2.1 Top level CMakeLists.txt file

The top level CMakeLists.txt file lives in your top level project
directory (e.g. srcs/gm2ringsim/CMakeLists.txt). It has the main
directives that tells CMake how to build your project.

Below is a representative top level CMakeLists.txt file.3 The 3 There are five main parts of the file
(roughly in order in the file)...
• Defining the project
• Loading CMake macros and

setting the CMake environment
• Setting compiler options
• Specifying external packages that

will be used
• Specifying subdirectories that

contain a CMakeLists.txt file and,
perhaps, code to build

mrb newProduct command will create a skeleton file for you.

1 # Ensure we are using a moden version of CMake
2 CMAKE_MINIMUM_REQUIRED (VERSION 2.8)

4 # Project name - use all lowercase
5 PROJECT (gm2analyses)

7 # Define Module search path
8 set(CETBUILDTOOLS_VERSION $ENV{CETBUILDTOOLS_VERSION})
9 if(NOT CETBUILDTOOLS_VERSION)

10 message(FATAL_ERROR
11 "ERROR:␣setup␣cetbuildtools␣to␣get␣the␣cmake␣modules")
12 endif ()
13 set(CMAKE_MODULE_PATH $ENV{CETBUILDTOOLS_DIR }/ Modules
14 ${CMAKE_MODULE_PATH})

16 # art contains cmake modules that we use
17 set(ART_VERSION $ENV{ART_VERSION})
18 if(NOT ART_VERSION)
19 message(FATAL_ERROR
20 "ERROR:␣setup␣art␣to␣get␣the␣cmake␣modules")

16 offline computing and software manual

21 endif ()
22 set(CMAKE_MODULE_PATH $ENV{ART_DIR }/ Modules
23 ${CMAKE_MODULE_PATH})

25 # Import the necessary macros
26 include(CetCMakeEnv)
27 include(BuildPlugins)
28 include(ArtMake)
29 include(FindUpsGeant4)

31 # Configure the cmake environment
32 cet_cmake_env ()

34 # Set compiler flags
35 cet_set_compiler_flags(DIAGS VIGILANT WERROR
36 EXTRA_FLAGS -pedantic
37 EXTRA_CXX_FLAGS -std=c++11
38)

40 cet_report_compiler_flags ()

42 # Set include and library search paths (the version numbers
43 # are minimum - if actual version of product is below specified ,
44 # will get error)

46 # Everyone should include these
47 find_ups_product(cetbuildtools v3_07_08)
48 find_ups_product(art v1_08_10)
49 find_ups_product(fhiclcpp v2_17_12)
50 find_ups_product(messagefacility v1_10_26)

52 # This project uses code from gm2ringsim ,
53 # gm2dataproducts , and gm2geom
54 find_ups_product(gm2ringsim v1_00_00)
55 find_ups_product(gm2dataproducts v1_00_00)
56 find_ups_product(gm2geom v1_00_00)

58 # This project uses code from Root
59 find_ups_root(v5_34_12)

61 # Make sure we have gcc
62 cet_check_gcc ()

64 # Macros for art_make and simple plugins (must go after
65 # find_ups lines)
66 include(ArtDictionary)

68 # Specify subdirectories to build
69 add_subdirectory(ups) # Every project needs a ups subdirectory
70 add_subdirectory(DisplayDataProducts)
71 add_subdirectory(calo)

writing source code 17

72 add_subdirectory(fcl)
73 add_subdirectory(test)
74 add_subdirectory(util)

76 # Packaging facility - required for deployment
77 include(UseCPack)

2.1.1 When you need to add/change a line in top level CMakeLists.txt

There are two situations for which you will have to alter the top level
CMakeLists.txt file:

If you add, delete, or rename a subdirectory If you add a subdirec-
tory, you must write a corresponding add_subdirectory(dirName)
directive.4 If you delete a directory, you must remove its correspond- 4 The add_subdirectory directory

tells CMake to go into that subdi-
rectory and build code there. If you
don’t have the add_subdirectory then
CMake won’t look in the subdirectory
at all.

ing add_subdirectory line. If you rename a directory, you must edit
its corresponding add_subdirectory line to reflect the change. If you
do not follow these steps, then some code may not build (without an
error, so this mistake will be hard to find) or you may get an error
when CMake tries to build a directory that no longer exists.

You use code from an external project If you use code from an exter-
nal project, you may need to add a corresponding find_ups_product
or similar line.5 5 See section 2.8 for instructions.

2.2 Organizing Source Code

The build system we use is quite flexible and you can organize your
code in many ways. You may be used to having all of your header
files in an include directory with the .cc files in other directories.
This artificial separation is unnecessary. You may group files together
any way you like and may have header files and implementation files
in the same directory. Typically, it is best to group files by topic or
functionality.

2.3 Writing Modules

Modules are plugins to art that perform certain functions (analyzers,
producers, filters, and output modules). See section 10 of the Art
Work Book6 for more information. Only reminders will be given here. 6

You should use artmod to write the skeleton of the module. Do
artmod --help-types to see the list of module types it will make.
Then just run it, giving the name of the class you want including any
namespace specification. For example,

18 offline computing and software manual

1 artmod producer tracking:TrackFinder
2 artmod analyzer gm2analysis :: CalorimeterDiags

Remember that you specify the class name, not the file name (so do
not give _module in the name).

2.4 Writing Services

TODO

2.5 Writing Input Source Modules

TODO

2.6 Directory level CMakeLists.txt file

If your subdirectory (e.g. srcs/gm2analyses/strawTracker) has
anything to build, has header files, or has further subdirectories,
then it must have a CMakeLists.txt file (and a corresponding
add_subdirectory line in the CMakeLists.txt from the directory
above - see Sec. 2.1.1).7 If your subdirectory has code to build, then 7 The directory level CMakeLists.txt

file is different from the top level
CMakeLists.txt file. The latter is in
your project top level directory, like
srcs/gm2analyses. The former is in a
subdirectory of that top level and is
described in this section.

the directory CMakeLists.txt file needs to have

1 art_make()

A directory with no .cc or .cpp files has no code to build and so
does not get an art_make line in the directory CMakeLists.txt file.

See the next section (Sec. 2.6.1) for arguments to the art_make.
You should call art_make only once per CMakeLists.txt file.

If your subdirectory has header files, then those have to be copied
to the release area when one runs mrb install. To do that, you need
a line the directory CMakeLists.txt file with

1 install_headers() # No arguments

If your subdirectory has fcl files, then those need to be copied to
the build area as well as the release area. There is some scripting in-
volved to do that (put the following in the directory CMakeLists.txt
file),

1 # install all *.fcl files in this directory to the release area
2 file(GLOB fcl_files *.fcl)
3 install(FILES ${fcl_files}
4 DESTINATION ${product }/${version }/fcl)

6 # Also install to the build area
7 foreach(aFile ${fcl_files })
8 get_filename_component(basename ${aFile} NAME)
9 configure_file(

writing source code 19

10 ${aFile} ${CMAKE_BINARY_DIR }/${product }/fcl/${basename}
11 COPYONLY)
12 endforeach(aFile)

If your subdirectory has futher subdirectories with code to build,
then you need an add_subdirectory(dirName) line for each subdi-
rectory.

2.6.1 Arguments to art_make

You can find documentation for art_make in its source code at
$ART_DIR/Modules/ArtMake.cmake. Basically, you need to specify

what libraries to link against when you use external code.8 If you 8 See Sec. 2.8 for how to tell if you are
using external code.don’t use any external code, then you will have no arguments to

art_make. It will tell CMake to build all regular source, modules,
services, and input sources in the directory. If you do use external
code, then you have four choices,

• If the source file using external code is a regular source (not a
module, not a service, not an import source), then you need

1 art_make(
2 LIB_LIBRARIES
3 library1
4 library2 # if needed
5)

• If the source file using the external code is a module source
(e.g. analyze_my_hits_module.cpp) then you need

1 art_make(
2 MODULE_LIBRARIES
3 library1
4 library2 # if needed
5)

• If the source file using the external code is a service source
(e.g. analyze_my_hits_service.cpp) then you need

1 art_make(
2 SERVICE_LIBRARIES
3 library1
4 library2 # if needed
5)

• If the source file using the external code is source code for an input
source
(e.g. midas_source.cpp) then you need

20 offline computing and software manual

1 art_make(
2 SOURCE_LIBRARIES
3 library1
4 library2 # if needed
5)

If you have a mixture of sources in your directory, you can string
the calls together. For example,9

9 In the example to the left, regular
sources get linked against Root’s
libGpad.so (see Sec. 2.8.2) and
modules get linked against code built
in the srcs/gm2analyses/util and
srcs/gm2analyses/strawtracker/util
directories (see Secs. 2.8.4 and 2.8.5).

1 art_make (
2 LIB_LIBRARIES
3 ${ROOT_GPAD}
4 MODULE_LIBRARIES
5 gm2analyses_util
6 gm2analyses_strawtracker_util
7)

Note that it does not hurt for code to build against a library that it
doesn’t need. So if you have five modules and only one needs to link
against a library, put that library in the MODULE_LIBRARIES section.
The one that needs it will link against it and the four that don’t won’t
care.

2.7 Libraries produced from building

Every directory in your project that has code to build generates at
least one library.10 Say, for example, you have a directory called

10 An important note, if your di-
rectory only has header files in it
(should be a rare situation for code
written by users), then no library
will be produced (because there is
no code to build - the header files
are all included by other source
code). You still need the directory
level CMakeLists.txt file for the
install_headers() directive, but do
not do art_make. See Sec. 2.6.

gm2analyses/calo. Regular sources (not modules, services, nor in-
put sources) get compiled and the objects go into a library called
libgm2analyses_calo.so (the name is the directory path with
slashes replaced by underscores). Each module in the directory gets
its own library. For example, if there is a module in that directory
called Analyze_Calo_module.cc then that code will go into a library
called libgm2analyses_calo_Analyze_Calo_module.so. A similar
thing happens for services and input sources. Therefore, one directory
of code may produce several libraries. The art_make directive in the
directory CMakeLists.txt file tells the build system to build code and
make the corresponding libraries.

2.8 Using External Code (Linking)

Your code is almost never self-contained, especially when writing
within the Art framework. You may use functions and classes from
external libraries, like Root and Geant4. You may use algorithms,
data products, and other functionalities from other projects, like

writing source code 21

gm2ringsim. You may use objects defined in other directories in your
project. If you are writing an art module or service, you may use
objects defined in the same directory, but in a different file from the
module or service. All of these examples are “external code”.

Art uses dynamic linking, which means that the art executable
(ours is called gm2) has very little code in it. Instead, it loads all of
the libraries it needs at runtime. The other style is static linking
where the executable has embedded in it all of the libraries it needs.
Dynamic linking, as the name suggests, allows for flexibility with one
executable able to load a variety of different libraries decided upon
at runtime with the configuration file. There is, however, overhead
in dynamic loading typically experienced as slow start-up time of
the program. Static linking produces an executable with all of the
libraries built in - so there is little flexibility in terms of functionality.
But the start up time is much faster. Static linking typically leads to
many copies of executables for the different functionalities, resulting in
duplication of libraries that are in common. For maximum flexibility
and non-duplication of libraries, art loads everything dynamically.

How do you know when you are using external code?
An easy indicator is when you have a #include for a header file. For
each #include, you need to think and perhaps add a corresponding
link directive in a CMakeLists.txt file.11 If you forget to link to a

11 Remember the two types of
CMakeLists.txt files: “top level”
and “directory level”. The former
(see Sec. 2.1) is the potentially big
file at the top level of your project.
The latter (see Sec. 2.6) is the smaller
file in the directory with your actual
source code files.

library that you need, you will get a missing symbol error when you
try to run. This section will explain how to figure out these situations
and actions you need to take.

2.8.1 Includes for system headers and base art headers

System headers, like #include <string> do not require any special
directives for linking. You get them for free.

Headers in art, fhiclcpp, and messagefacility do not require
anything in your directory level CMakeLists.txt file. The correspond-
ing libraries are automatically loaded by the art executable. Your top
level CMakeLists.txt file must contain the following lines,12

12 These lines add header file direc-
tories to the compiler include search
path (e.g. without them, you will get
a compilation error that header files
cannot be found).

1 ...
2 cet_report_compiler_flags ()
3 ...
4 find_ups_product(art v1_08_10)
5 find_ups_product(fhiclcpp v2_17_12)
6 find_ups_product(messagefacility v1_10_26)
7 ...

22 offline computing and software manual

2.8.2 Includes for Root headers

Including a header from Root is a little unusual because you do not
have to give a path in the include, e.g. #include "TCanvas.h" (not
#include "root/TCanvas.h"). If you include a header from Root,
you will also need to link to the corresponding Root library. First, in
the top level CMakeLists.txt file, you must have,13

13 That find_ups_root line adds the
Root headers to the compiler include
search path and creates CMake
variables corresponding to each Root
library.

1 ...
2 cet_report_compiler_flags ()
3 ...
4 find_ups_root(v5_34_12)
5 ...

If you look at the code for the find_ups_root CMake macro at
$CETBUILDTOOLS/Modules/FindUpsRoot.cmake you will see lines

like,14

14 These lines define the CMake
variables that correspond to Root
libraries. You use them in the direc-
tory level CMakeLists.txt file to tell
CMake to link against that library.

1 find_library(ROOT_GLEW NAMES GLEW PATHS ${ROOTSYS }/lib
2 NO_DEFAULT_PATH)
3 find_library(ROOT_GPAD NAMES Gpad PATHS ${ROOTSYS }/lib
4 NO_DEFAULT_PATH)
5 find_library(ROOT_GRAF NAMES Graf PATHS ${ROOTSYS }/lib
6 NO_DEFAULT_PATH)
7 find_library(ROOT_GRAF3D NAMES Graf3d PATHS ${ROOTSYS }/lib
8 NO_DEFAULT_PATH)

To determine the Root library you need, look up the Root object
in the Root documentation at http://root.cern.ch/drupal/content/
reference-guide (select the appropriate version of Root - usually the
PRO version). Find the class name from the list and click on it. On
the new page, on the very right hand side in a little greyed out box it
will say the library that corresponds to that Root object. For example,
if you #include "TCanvas.h" you need to link against the libGpad
library. The CMake variable name will in general be the name of the
library, all upper case, with the lib replaced by ROOT_. So libGpad →
${ROOT_GPAD}.

In your directory level CMakeLists.txt file, you will have the
art_make directive. Add the appropriate CMake variable correspond-
ing to the Root library you need. See Sec. 2.6.1 for where to put such
items in the arguments. For example,15

15 In the example left, regular sources
are linked against libGpad.so
while modules are linked against
libTree.so and libTVMA.so.

1 art_make (
2 LIB_LIBRARIES
3 ${ROOT_GPAD}
4 MODULE_LIBRARIES
5 ${ROOT_TREE}
6 ${ROOT_TVMA}

http://root.cern.ch/drupal/content/reference-guide
http://root.cern.ch/drupal/content/reference-guide

writing source code 23

7)

2.8.3 Includes for GEANT headers

To include a header file from Geant4, requires you to have Geant4/
in the header path, for example #include "Geant4/G4Track.hh". If
you include such headers in your code, then you will also need to link
against the Geant4 libraries. First, in your top level CMakeLists.txt
file, you must have,

1 ...
2 cet_report_compiler_flags ()
3 ...
4 find_ups_geant4(v4_9_6_p02)
5 ...

That line adds the Geant4 headers to the compiler include
search path and creates the CMake variables ${G4_LIB_LIST}
and ${XERCESLIB}. For any Geant4 header, just add those CMake
variables to the art_make directive in your directory CMakeLists.txt
file. See Sec. 2.6.1 for where to put such items in the arguments. For
example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,16

16 If you are curious, you can see
where G4_LIB_LIST is defined in
$CETBUILDTOOLS_DIR/Modules/FindUpsGeant4.cmake.
XERCESLIB goes with Geant.

1 art_make(
2 LIB_LIBRARIES
3 gm2geom_calo
4 gm2geom_station
5 artg4_material
6 artg4_util
7 ${XERCESCLIB}
8 ${G4_LIB_LIST}
9 SERVICE_LIBRARIES

10 gm2ringsim_calo
11)

2.8.4 Includes for headers in the project

The #include directive should include the path to the header file,
including the name of the project even if the header is in the same
directory as the source, though you could just give the header file
name. For example, if CaloHitSD.hh is in the gm2ringsim/calo
directory, then CaloHitSD.cc, when it includes CaloHitSD.hh, can do
either

1 #include "CaloHitSD.hh"

24 offline computing and software manual

or

1 #include "gm2ringsim/calo/CaloHitSD.hh"

The latter is preferred as it is clearer, but if you change the name of
the directory, you must change the include as well.

If you have a regular source file and it includes a header that is
present in the same directory, then you do not need to do anything
to the CMakeLists.txt files. If you have a module, service, or input
source file and it includes a header that is present in the same direc-
tory, then you need to link against the library for that directory. You
do not need to add anything to the top level CMakeLists.txt file.
To the directory CMakeLists.txt file, you must add the library. See
Sec. 2.6.1 for where to put such items in the arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,17

17 In the left example, services in
that directory are linked against
the library that gets created
from the regular sources, namely
libgm2ringsim_calo.so. You can
predict the name of the library by
taking the source directory (e.g.
gm2ringsim/calo) and replacing the
slashes by underscores.

1 art_make(
2 LIB_LIBRARIES
3 gm2geom_calo
4 gm2geom_station
5 gm2ringsim_station
6 artg4_material
7 artg4_util
8 ${XERCESCLIB}
9 ${G4_LIB_LIST}

10 SERVICE_LIBRARIES
11 gm2ringsim_calo
12)

If any source file uses a header that present in a different directory
in your project, then you must link against that library. In the exam-
ple above, code in the gm2ringsim/calo directory includes code from
gm2ringsim/station, and hence gm2ringsim_station is present in
the arguments of art_make.

An important exception to these instructions is if the directory with
the header file contains only header files. In that case, that directory
produces no libraries and you do not have to change the directory
CMakeLists.txt file.

2.8.5 Includes for headers in other projects

If you have a source file (regular, module, service, or input source)
that uses code from another project, then you need to do some work.
An example here is code in gm2ringsim uses code from the gm2geom
and artg4 projects. The #include needs the path to the header
file including project name, directory name and header name. For
example, #include "artg4/util/util.hh".

writing source code 25

In your top level CMakeLists.txt file, you need a find_ups_product
line for the project specifying the project name and a minimum
version number. See Sec.2.1 for an example.

In your directory CMakeLists.txt file, you need to list the library
corresponding to the code you are using. See Sec. 2.6.1 for where to
put such items in the art_make arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,

1 art_make(
2 LIB_LIBRARIES
3 gm2geom_calo
4 gm2geom_station
5 artg4_material
6 artg4_util
7 ${XERCESCLIB}
8 ${G4_LIB_LIST}
9 SERVICE_LIBRARIES

10 gm2ringsim_calo
11)

When the regular sources are built, they will be linked against
code in gm2geom/calo, gm2geom/station, artg4/material, and
artg4/util.

An important exception to these instructions is if the directory
with the header file contains only header files. In that case, that
directory produces no libraries and you do not have to change the
directory CMakeLists.txt file. You still need to have the top level
CMakeLists.txt file correct as described above.

3
Common Things You Do...

This chapter contains some reminders of common things you do in
Muon g− 2 code.

3.1 Dealing with parameters

The constructor for your module or service has the parameter set as
an argument. You can retrieve information from the parameter set
and supply defaults if the parameter does not exist as in the example
below.

1 gm2ex :: CalorimeterDigitizer :: CalorimeterDigitizer(
2 fhicl :: ParameterSet const & p) :
3 category_ (p.get <std::string >("category","digi")),
4 TAURAMP_ (p.get <float >("TAURAMP", 1.4 /* ns */)),
5 TAUDECAY_ (p.get <float >("TAUDECAY", 36.4 /* ns */)),
6 PULSELENGTH_ (p.get <int >("PULSELENGTH", 30 /* samples */)),
7 // ...

3.2 Readling enviornment variables

1 #include <cstdlib >
2 // ...
3 std:: string value = std:: getenv("PATH '');

The argument to std::getenv is a constant character array, not a
std::string.
3.3 Throwing an exception

See http://mu2e.fnal.gov/public/hep/computing/exceptions.shtml.

1 #include "cetlib/exception.h"
2 // ...
3 if (something) {

http://mu2e.fnal.gov/public/hep/computing/exceptions.shtml

28 offline computing and software manual

4 throw cet:: exception(CATEGORY) << "Message\n"
5 }

3.4 Finding a file

cetlib has a nice facility for searching for files in a path specification.
See $CETLIB_INC/cetlib/search_path.h.

It may be convenient to specify the search path in a FHICL param-
eter with the possibility of providing an environment variable. Here
is some code that takes a search path through the parameter, but if
the first character is a $, it then gets the path through the specified
environment variable.

1 gm2util :: MetadataFromFile :: MetadataFromFile(
2 fhicl :: ParameterSet const & p) :
3 searchPath_ (p.get <std::string >("searchPath", ".")),
4 fileName_ (p.get <std::string >("fileName")),
5 keyName_ (p.get <std::string >("keyName"))
6 {
7 // Let 's parse the search path
8 // If the first character is a dollar sign , then the
9 // remaining is an environment variable

10 if (searchPath_.at(0) == "$") {
11 std:: string envVar = searchPath_.substr (1);
12 char* envValue = std:: getenv(envVar.c_str ());
13 if (! envValue) {
14 searchPath_ = ".";
15 throw cet:: exception("META_DATA_FROM_FILE") <<
16 "Environment␣variable␣" << envVar << "␣is␣not␣set";
17 }

19 searchPath_ = std:: string(envValue);
20 }
21 }

common things you do... 29

Index

add_subdirectory, 17
art_make, 18
arguments, 19

artmod, 17

CMakeLists.txt
directory level, 18
top level, 15

exceptions, 27
external code, 20

find_ups_geant4, 23
find_ups_product, 21
find_ups_root, 22

input source
writing, 18

install_headers, 18

linking, 20

modules
writing, 17

services
writing, 18

	Getting started with gm2artexamples
	Logging in and selecting a release area
	Starting a development area
	Checkout code
	Building code
	Testing
	Running
	Logging in again
	Summary

	Writing Source Code
	Top level CMakeLists.txt file
	Organizing Source Code
	Writing Modules
	Writing Services
	Writing Input Source Modules
	Directory level CMakeLists.txt file
	Libraries produced from building
	Using External Code (Linking)

	Common Things You Do...
	Dealing with parameters
	Readling enviornment variables
	Throwing an exception
	Finding a file

	Index

